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SUMMARY 
The general context of this paper is to support the design of spillways by a direct mathematical approach 
instead of trial-and-error methods. 

First, a two-dimensional model is formulated to determine the free surface and the discharge for a 
stationary, incompressible, homogeneous, non-viscous and irrotational flow over a fixed spillway. The flow 
satisfies the Laplace equation and the Bernoulli equation (potential flow). An important feature of the model 
is that it can be extended to design the spillway structure when the spillway is not fixed but the pressure on 
the spillway is described by a cavitation criterion. 

Next, the continuous model is discretized by the boundary element method (BEM). We use a non-linear 
programming algorithm to calculate the pressures and the shape of the spillway. A computer-aided design 
package is developed on a PC using the equations describing the free surface, the BEM and standard 
optimization techniques. The input and output of the model are realized using graphical routines. Finally, 
we discuss the convergence and the computation time of the algorithms. 

KEY WORDS Boundary element method Computer aided design Optimization 

1. INTRODUCTION 

The objective of this paper is to study the cavitation damage on the shape of a spillway. First, we 
formulate and solve the model which describes the location of the free surface and the discharge of 
flows over weirs and spillways. The model is restricted to stationary potential flows. Secondly, we 
use the potential flow solution to study the cavitation damage. If there is cavitation, the shape will 
be changed in order to prevent damage as much as possible. Thus the model calculates the free 
surface, the flow and the discharge and also helps to study cavitation. 

In recent years much research has been carried out to solve stationary potential flows over 
weirs. Chan et al.,I Washizu and Nakayama2 and Dierch et aL3 solved the problem by using the 
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finite element method (FEM) to discretize the Laplace equation which describes the potential 
flow. OCarroll and T ~ r o ~ ~ ~ ~  used the variational approach together with the FEM and a 
Kantorovisch computational method to find the solution. 

We will discretize the model given in Section 2 with the boundary element method (BEM). 
Aitchisons solved another free surface problem with the BEM. In Section 3 we give the 
advantages of the BEM compared with the FEM. It is also important that we use a model with a 
decreasing free surface and a uniform inflow. 

The outline of the paper is as follows. Section 2 contains the physical assumptions and the 
continuous model equations found by these assumptions. Section 3 explains the BEM and 
presents the discrete model equations found by the BEM. Section 4 presents the dimensionless 
model obtained from the discrete equations of Section 3 and the computer programme structure 
of this model. In Section 5 we give results for a particular weir. In particular, the influence of the 
choice of the boundary elements is studied. Section 6 gives the values used to study cavitation. 
First, we give the method by which these values can be calculated from the potential flow 
solution. Next, we give two cavitation criteria. Finally, a suggestion to extend the model to an 
optimal spillway design model is given. In Section 7 we give some final remarks. 

2. PHYSICAL ASSUMPTIONS AND THE CONTINUOUS MODEL EQUATIONS 

Suppose we have a large reservoir of water. Water flows over a weir in the reservoir. Furthermore, 
we suppose that the flow can be described by velocities, the location of the free surface and the 
discharge. The discharge is the volume of water that flows in the reservoir every second. The flow 
can be calculated from the equations given in this section. It is necessary to impose certain 
conditions upon the flow to derive these equations. The equations and conditions will be taken on 
a two-dimensional domain R around the weir (see Figure 1). 

First, we assume that the flow out of the reservoir is time-independent. This assumption means 
that the water level of the reservoir, the stagnation level, does not change in time and the potential 
energy of the reservoir is therefore time-independent. This assumption holds, of course, only in 
the domain 52. In the reservoir at a large distance from the weir the velocity will be zero and so the 
velocity on the stagnation level will also be zero. It is necessary that the free surface level at the 
inlet of the domain R be lower than the stagnation level, since there is flow into the domain and 
therefore loss of potential energy. 

Furthermore, we assume that the flow is incompressible, homogeneous, non-viscous and 
irrotational. This means that we have a steady potential flow satisfying the Laplace differential 
equation and the Bernoulli equation in R. Since the flow is incompressible, the discharge Q is 
constant through the whole domain. The empirical constant H, is defined as the distance between 
the stagnation level and a specified horizontal level in the reservoir. The part of the reservoir from 
this specified level to the bottom is taken out of the domain R, because there the velocities are 
small and the influence of this part on the outflow is negligible. We choose a co-ordinate system 
with the origin above the inlet of the domain R and on the stagnation level, the positive x 
downwards and the positive y to the right. The atmospheric pressure is taken as zero. In this 
co-ordinate system the Bernoulli equation can be given by 

where p is the pressure, u is the velocity, p is the density constant and g is the gravity constant. In 
this equation we have found the Bernoulli constant by using the Bernoulli equation on the 
stagnation level, because there the velocity is zero and the (atmospheric) pressure is also zero. 
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Figure 1. Domain of the continuous two-dimensional model 

Now we define a streamfunction Y = Y ( x ,  y )  with 

a\y - - - v y  - and - = v  ay 
ax ay x y  

where v, is the velocity in the x-direction and vy  is the velocity in the y-direction. 

equation as 
Using the incompressibility and the irrotationality of the flow, we can formulate Laplace's 

The lines on which Y is constant are called streamlines and the direction of the velocity is tangent 
to the streamline. Since particles follow a streamline, we can assume that the bottom and the free 
surface of the domain are both streamlines. The definition of the discharge through a vertical line 
segment gives a relation between Y and the discharge, 

b ( y )  ay 
Q = ls;: V y  dx= - Is,,, ax dX ='Y(S(Y), Y)-y(Ny), y)=yf-yb,  (4) 

where s(y) is a function for the free surface, b(y)  is a function for the bottom, Y,  is the constant Y 
on the free surface and Yb is the constant Y on the bottom. Now we choose Yf = Q + K and 
Y b = K  with K constant. The constant value K is a translation factor in the solution of the 
problem and can be taken as zero. Thus we have 

Yf=Q and Yb=o. ( 5 )  

The velocity along the boundary of the domain can be given by a Y / d n ,  with n the outward 
normal vector on the boundary. Another condition on the free surface is found from the Bernoulli 
equation (1) using p = patm = 0 and v = aY'/an: 

($y - 2gx =o. 

This equation gives a simple relation between the location of the free surface and the velocity on 
that surface. We assume that the upstream section of our domain is large enough to satisfy 
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uniform flow through the inlet and we also assume that the flow through the outlet is horizontal. 
Horizontal flow means that the vertical velocities are zero. Furthermore, uniform flow is a 
horizontal flow with constant horizontal velocities. From these assumptions we obtain at the 
outlet the boundary condition 

ay 
- =0, 
an  

and at the inlet the conditions 

(7) 

with (xl, 0) the position of the free surface at the inlet. Condition (8a) agrees with the conditions 
in ( 5 )  for x = x 1  and x = H , .  To determine the discharge, we use a direct relation between this 
discharge and x l ,  

Q = (Ho  -xi) (2gx1 )1’2> (9) 

which can be found by using equation (1) for the point (x,,O) with o = Q / ( H , - x , )  and p=patm. 
The equation for 2, is obtained from the uniform flow through the inlet. If x 1  increases from zero to 
i H , ,  the discharge Q increases from zero to Q , , , = H o ~ [ ( 8 / 2 7 ) g H , ] ,  and if x1 increases from 
$Ho to H , ,  then Q decreases from Q,,, to zero. In the case of a flow in a channel without a weir 
there is a constant water level X = f H ,  through the whole domain and there is a constant 
horizontal velocity through the whole domain (uniform flow). If there is a weir, the water level at 
the inlet will always be higher than i H , .  Therefore we assume that x1 is restricted to the interval 
(0, fH,). This yields the extra condition 

Obx,  dfHo.  (10) 

The last assumption is that we restrict the model to problems where the free surface function 
s(y) is an increasing function. Thus the surface descends from the inlet until the outlet. This gives 

This assumption is introduced to avoid a solution with waves on the free surface. The assumption 
is valid for low weirs in a channel6* based on the hydrostatic pressure distribution. For spillways 
the assumption is not proven but there has never been found a spillway with an increasing free 
surface. 

Taking all the equations together, we obtain the continuous model 

Y=O (on the bottom), ( 12b) 

Y = Q  (on the free surface), ( 1 2 4  
av -=o (at the outlet), ( 1 2 4  an 
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-=0 
ay 
an 

(gy -2gx =o  

(at the inlet), 

(at the inlet), 

(on the free surface), 

Q=(Ho-xl)(2gxl)”2 (at the point (xl,O)), (12h) 
Odx, dSH0, (12i) 

(on the free surface), 

3. DISCRETIZATION OF THE MODEL USING THE BOUNDARY ELEMENT 
METHOD (BEM) 

One popular discretization method for potential flows is the finite element method (FEM), where 
the total domain is divided into elernents.*-l0 The FEM is frequently applied to many problems 
since a lot of the elements are independent of each other and therefore the matrices found by the 
FEM contain many zeros. However, for free surface problems the FEM discretization gives 
difficulties. Suppose that the location of the free surface in such a problem is found by an iteration 
process. The elements near the free surface cannot be constant during these iterations so that the 
variation of these elements makes the discretization complicated. 

At the end of the 1970s and the beginning of the 1980s Brebbia studied another discretization 
method for potential problems, the boundary element method (BEM).”-14 This method needs 
only a discretization of the boundary of the domain, and when the solution on the boundary has 
been calculated, the solution inside the domain can also be calculated. The elements of the BEM 
are not independent and therefore the matrices obtained by this method contain fewer zeros. 
However, the dimension of the matrices is smaller than the dimension of the matrices obtained by 
the FEM and the discretization of the free surface is much easier. For this reason we have chosen 
to apply the BEM. However, before we can use the BEM discretization we need a continuous 
model with all equations and conditions on the boundary of the domain. The Laplace equation, 
valid in the entire domain, can be replaced by an equivalent integral equation on the boundary. 
The equation is based on Green’s second theorem: 14* l 5  

where S is a closed domain, C is the boundary of the domain, 4 is a function satisfying the Laplace 
equation, 4* is a free function, V2 is the Laplace operator and n is the outward normal vector (see 
Figure 2). The function 4 is replaced by Y and for d* we choose the fundamental solution for the 
two-dimensional case,I4 

where r is a vector from the origin 0 to a fixed point A on C and z is a vector from the origin 0 to 
a free point on C (see Figure 2). The fundamental solution, which is a function of T, satisfies 
Laplace equation for every T # r. 
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0 
n 

Figure 2. Boundary to illustrate the Green equation 

It can now be proved”, l6 that (13) is equivalent to 

with a(r) = 0 if r is the vector to a point not in S, a(r) = a  if r is the vector to a point on C (0 < a < 2n) 
and a(r) = 271 if r is the vector to a point in S. If the boundary is smooth, we have a = n. The basic 
elements of the proof are: take a point A on C and remove a half-circle area with centre A and 
small radius E from S; for the remaining area, (13) is calculated and, finally, the limit E+O is taken 
in the obtained expression. Sneddon’’ proves the equation for an interior point. The proof for a 
boundary point is similar. 

We are now able to discretize the boundary of Figure 1 by the BEM using linear (first-order) 
elements (line segments). We choose rn + 1 nodal points on the boundary with the first nodal point 
at the highest point at the inlet, and from this point we number the nodal points in a clockwise 
direction (see Figure 3). Then the nodal points are connected by m linear elements so that a closed 
approximation of the real contour is obtained. The centre point of an element is called an element 
point. 

The notations for the nodal points and the element points are given in Figure 3. Now we choose 
Y and a Y p n  constant on each element. This choice is recommended by Romatel’who suggests 
taking the order of an element exactly one degree higher than the Y and the a Y p n  on that 
element. Thus in (15) Y and aY’/an are constant on each element and the remaining integrals are 
defined by 

1 if i= j ,  
a i j = j c j  $log(k)dc+ndij, with dij= 0 if i#j, 

where C j  indicates element j and rij  is the distance between element point i and a free point on 
elementj (i= 1 . . . rn, j =  1 . . . m). It is obvious that we cannot use definition (15) for higher-order 
elements since Y and aY’/an are not constant. In this case the integrals in (15) can only be solved 
numerically. 

With (15a, b) equation (15) gives the matrix expression 

AY =BYn, (16) 
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Figure 3. Discretization of the boundary with linear elements 

where A is an rn x m matrix with coefficients aij, B is an m x m matrix with coefficients b,, \Y is an 
rn-vector with components Y j  and Vn is an rn-vector with components aYJ/an (j= 1 . . . m). For 
aij and b, it is possible to give analytical expressions. The expressions are given here for three 
different cases. First, for i = 1 . . . m and j = 1 . . . m we define 

where (x:, y;), (xi, yf) are the nodal points and (xi, y6) are the element points of element i (see 
Figure 3). The expressions in the three different cases for aij and b, are 

(i) expressions for the diagonal coefficients (i = j )  

a..=n 
CJ 9 

b,= Li[l -log(LJ2)]; 

(ii) expressions for the coefficients with vij = 0 (i # j )  

a,.=() 

1 
b,= Lj+ -[ --2aj+ &j)lOg(aij+ p i j +  Yij) + p i j  iog(y,,)l; 4Lj 

(iii) expressions for the coefficients with vi j#O (i#j) 

V - -  
(184 

1 
b,= Lj+  -[ -(2aj+pij)log(orij+pij+yij)+~ijlog(yij)] - -+j. 

4Lj Lj 
As mentioned before, the expressions above can only be derived for linear elements. For higher- 

order elements there is also a matrix expression like (16) but the dimension of this matrix is larger 
and the derivation of this expression costs more effort.14 
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It is convenient to introduce two vectors x and y (dimension m +  1) with 

x, = xl"= xi,  y,=yl"=yf, 

x.,xi-l I I -x:, - ' y i=yf - l -  - Yr, i i = 2 . .  . m, 

xm+1 =x1, Y,+l = Y l ?  (19) 
where the indices 1 . . . p1 + 1 correspond to the free surface co-ordinates, the indices 
p 1  + 1 . . . p 2  + 1 to the outlet co-ordinates, the indices p z +  1 . . . p 3  + 1 to the bottom co- 
ordinates and the indices p 3  + 1 . . . m+ 1 to the inlet co-ordinates. In our discrete model 
definition we choose the vector x constant in the bottom components and the vector y constant in 
all components. Moreover, we define a fixed number of elements, each of equal size, at the inlet 
and at the outlet which are fixed by the equations 

(204 

Thus the vector X=(xl, xZ, . . . , x ~ , + ~ )  contains the remaining free components, which deter- 
mine the free surface. The x-components on the inlet and on the outlet, given by (20), depend 
on X. Using (12) and the assumptions of the last section, we obtain the discrete model: 

AY =BY, (A(X) and B(X) given by (1 8)), (2 1 a) 

(2 1 b) 

yi=Q for i = l  . . . p , ,  (2 1 4  

YL=O for i = p , + l  . . . p 2 ,  (21d) 

YL=O for i = p 3 + 1 . .  . m, (2 1 4  

y i=o  for i=p,+ 1 . . . p 3 ,  

i - p 3  - 0-5 
m - P ,  

yi=Q for i = p , + l . .  . m, 

(Yy-g(xi + xi+ 1)  = 0 for i = l  . . . pl, 

X i < X i + l  for i = l  . . . pl.  W )  
To find the solution of this model, we have to solve the unknowns X, Q, Vi for i=pl + 1 . . . p 2 ,  
Yi for i = p 3  + 1 . . . m, Y;  for i =  1 . . . p1 and '4': for i=p2 + 1 . . . p 3  from the non-linear 
equations (21). This can be done if we transform (21) to a dimensionless model that can be solved 
using a non-linear optimization routine and a Gauss elimination routine. 

4. DIMENSIONLESS MODEL AND PROGRAMME STRUCTURE 

Equations (21) are made dimensionless with the length H, and the time (Ho/g)1/2. This is 
important since the dimensionless variables give equal-weighted equations which are necessary to 
achieve a good result in the optimization routine. The dimensionless variables in the remainder of 
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this paper have the same notation as the variables used before. Equations (21) are transformed to 
the following dimensionless equations: 

A Y  =(B-C)Yn, with cij=Ljlog(H,) for all i = l  . . . m, (224 

y”=o for i = p 2 + l  . . . p 3 ,  (22b) 

Yi=Q for i = l  . . . pl,  (22c) 

Yk=O for i=p ,  + 1 . . . p 2 ,  (224 

Yk=O for i = p 3 + l . .  . m, (224 
i-p,-05 

111- P 3  
y i=Q for i = p 3 + l  . .  . m, 

( Y y  - ( x i  + xi+ 1 )  = 0 for i = l  . . . pl ,  (22g) 

Q = ( ~ - X I ) ( ~ X ~ ) ” ’ ,  (22h) 

X i < X i + l  for i = l  . . . p l .  (22j) 

A=[A1 A2 A3 A41, (23) 

o<x,  <+, (22i) 

We subdivide matrix A (and in a similar manner B and C) into four submatrices 

where A1 contains the columns 1 . . . p1 of A, A2 the columns p l + l  . . , p z ,  A3 the columns 
p 2  + 1 . . , p 3 ,  A4 the remaining columns. Using (22a+), we obtain the system 

F(X) @ (XI = G(X), (24) 
with 

F(X)=[-Bl+Cl A2 -B3+C3 A41 ( m x m ) ,  

dqX)=[Y. l . .  . Yi1, Ypl+ l . .  . Y P * ,  Y P + l . .  . Y,”’, YIP3+’ . . . Ym] (m), 

GT(X)=[ -Q j= f 1 AZ,,, . . . , -Q  j= f 1 AZmj] (m). 

If we start with an initial vector X, we obtain an iteration process with, in each iteration, X 
known from the preceding iteration. Thus in each iteration the vector @(X) can be calculated with 
(24) and Q can be calculated with (22h). We use (22g) in the object function definition of the 
optimization model and the remaining relations, (22f, i, j), are the constraints. The model is 
formulated as 

PI PI 
min C (hi)2= C [@i(X)2-(xi+xi+1)]2, 

X i = l  i = l  

subject to 

i- p ,  - 0.5 
m- P 3  

= O  for i=p ,+l  . , . m, @i@) - Q 

O < X , < $  

xi-xi+,<O for i = l  . . . p l ,  

where @ and Q can be calculated by (24) and (22h) for a given X. 
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6 i 4 b I 10 12 14 I# 1b 
O f  

Figure 4. Initial values for the free surface (case I) 

Table I. Results for different numbers of elements in the inlet and outlet 
((dim) means dimensionless) 

Pi 
Number of elements max I hi I min (hi)' Time 

i X i = l  Q 
Case Inlet Outlet (m's-') (dim) (dim) (4 

Ia 3 2 19.288 0.02086 0.00137 175 
Ib 4 2 19-345 0.00758 0.00015 170 
Ic 4 3 19.358 090575 0~00012 150 
Id 5 3 19.351 0.00397 O~ooOo4 185 
Ie 6 3 19.350 0 0 0 5 5 5  0.00009 185 
If 7 3 19.343 0.00479 0.00007 203 

An optimization routine in Fortran is developed to calculate the solution of (25). This routine 
contains the standard optimization routine NCONF from the IMSL library, which uses the 
successive quadratic programming algorithm and a finite difference gradient to solve (25) for a 
given start value" and the standard Gauss elimination routine F04ARF from the NAG library to 
solve (24). The routine converges to the solution for a good initial value of X. When the solution 
has been found, Q and the vector @ are of course also available. The vector @ contains the 
remaining values of Y and Y, on the boundary. With Y and I, on the boundary and the position 
of the boundary we can also calculate \y at every point in the domain.I2 The optimization routine 
is part of a larger programme which makes it possible to manipulate boundaries on the screen 
and on disc (graphical editing). 

5. COMPUTATIONS FOR A PARTICULAR WEIR AND THE INFLUENCE O F  THE 
ELEMENT AND DOMAIN CHOICE 

In this section we first study the effect of the number of elements in the inlet and outlet on the 
solution. We then study the behaviour of the solution if we enlarge the upstream and downstream 
sections. 

A particular weir with the initial free surface is given in Figure 4. For H ,  = 5.5 we have made six 
computations, with in each case a different number of elements in the inlet and outlet. Table I 
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CONTOUR 

ERROR IN BERNOULLI 

Figure 5. Contour and Bernoulli errors (case Ia) 

shows the number of elements, the discharge Q, the maximum absolute error in Bernoulli's 
constant, the value of the object function and the computation time (on an Olivetti M24 SP) for 
each case. 

The object function and the maximal absolute error in Bernoulli in Table I are smaller for more 
elements in the inlet and outlet. Thus we can conclude that more elements in the inlet and outlet 
improve the location of the free surface since Bernoulli is better satisfied (compare Figure 5 with 
Figure 6 ) .  A large improvement is especially obtained if we increase the number of elements used 
in case Ia. The discharge is almost the same in the six cases. When we have chosen a sufficient 
number of elements in the inlet and outlet we obtain a relatively small object function. An 
improvement by using more elements of the object function is impossible. Generally, a problem 
with more elements needs more computation time in each iteration since the matrices are larger. 
Thus it is useful to take more elements only if this leads to a relatively large improvement in the 
object function or an improvement in the computation time. 

For the same weir, but now with H o = 5 . 6 ,  we study the solution for different upstream and 
downstream sections. The length of the upstream section is U and the length of the downstream 
section is D (see Figure 7). Table I1 shows the discharge, the maximum absolute error in 
Bernoulli's value and the value of the object function for different U and D. 
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CONTOUR 

ERROR IN BERNOULLI 

Figure 6. Contour and Bernoulli errors (case Id) 

Table 11. Results for different upstream and downstream sections 

U D  
Case (m) (m) 

Q 
(mZ s - l )  

max I hi I 

(dim) 
I 

min f (h# 
X i = l  

(dim) 

IIa 2 5 
IIb 3 5 
IIC 4 5 
IId 4 6 
IIdl 4 6 
IIe 4 7 

19993 
20.070 
20.059 
20069 
20103 
20.115 

090979 
0.00682 
0.00887 
0.03719 
0.00974 
0.0 1076 

000017 
O~OOO 18 
0~00018 
000227 
000017 
0.000 16 

The table shows, except in case IId, that the solutions do not differ very much. The result of case 
IId in Figure 8 shows a relatively large error in Bernoulli's constant in the last element on the free 
surface. This is caused by the small length of this element, since the element point lies near the 
comer point on the boundary. In this corner point not only is the boundary discontinuous but 
also the velocity; hence there is a large error in Bernoulli's constant. In case IIdl we have changed 
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Figure 7. Definition of upstream length U and downstream length D 

CONTOUR 

ERROR IN BERNOULLI 

e 

Figure 8. Contour and Bernoulli errors (case IId) 

the size of the elements on the free surface to obtain a large corner element. Figure 9 shows the 
improvement in the object function and the maximum error in Bernoulli's constant. Figure 9 also 
shows that the largest error in Bernoulli's constant is near the second element on the free surface. 
This element is shorter than the other elements on the surface. Finally, we remark that a better 
result is obtained by using free surface elements with equal size and by avoiding small corner 
elements. 
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CONTOUR 

ERROR I N  BERNOULLI 

0.019 o'o=l 
4.0101 

2 4 a a 10 U I4 18 h - v co-oreinmti o f  
thm trw i u r f i c i  
mmwnt Dointm 

-0.au 

Figure 9. Contour and Bernoulli errors (case IIdl) 

6. CAVITATION CRITERION 

The most important aspect of a flow over a spillway is the detection of cavitation on the spillway 
shape, since cavitation can result in damage on the spillway. In general, cavitation cannot always 
be avoided, but we can control the point on the shape of the spillway where cavitation starts by 
changing the shape. The design of the shape is better when this point is situated farther away from 
the crest of the spillway. 

The real velocity on the bottom is zero. Therefore a boundary layer exists, which grows along 
the shape and in which the velocity drops from the mean velocity at the top of the layer to zero on 
the bottom. For the flow over the boundary layer we take the potential flow found from the 
optimization model (see Figure 10). 

The thickness of the boundary layer is found fromlg 

where 6(x) is the thickness function, x is the distance from the crest of the spillway, U ( x )  is the 
mean velocity of the potential flow and uf is the kinetic viscosity of water (see Figure 10). In the 
discrete model the distance x to an element point can be derived from the size of the elements on 
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potentiol flow \ 

Figure 10. Boundary layer on the spillway 

the shape, and U ( x )  at each element point can be derived from the known discharge, the angle of 
the element and the height of the domain above the element point. If the solution of the potential 
flow is known, we can calculate 6 ( x )  at every element point on the shape. 

The cavitation can be measured with different criteria, of which two are given in this section. 
One uses the Holl and the Thoma values and the other uses the Gal'perin and the Thoma values. 
First we give the definition of these values" and next we present the criteria. 

The Thoma value K ( x )  is defined as 

where p(x)  is the pressure on the bottom of the potential flow, pat,,, is the atmospheric pressure and 
pv is the vapour pressure. The pressure p(x)  is found for each element point from the solution of 
the potential flow, and palm and pv are known constants. 

Before we introduce the Gal'perin value and the Holl value we first define the velocity at a small 
distance y from the real bottom: 

(In our calculations we use y=O.Ol m.) The definition of the Gal'perin value is 
2 

a,(x)= 1.76(&) 

and the definition of the Holl value is 
0.4 

gH(x)=  1415 (&) . 
With the solution of the potential model we can calculate (27) and (29) at every element point 

on the shape. The variable x is found from a summation of the size of the elements, starting with 
the element on the top of the weir. We define two different values to detect cavitation: 

AG- (4 = K (XI - (x),  (304 

AH(x)=K(x)-uH(x). (30b) 
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These values can be determined for every element point on the shape. There is cavitation at the 
element points where AG or AH is negative. The value oG is in general larger than the value cH. 
Therefore the definition of Gal’perin detects cavitation sooner and so the shape is more restricted. 
Low weirs have a shape with all As positive. In that case we will try to find a shape with the As as 
small as possible, because a shape with a large A is expensive. Generally, it is impossible to find a 
shape for a high spillway with a A which is positive at all element points. Subsequently, we will try 
to find a shape with element points with cavitation far away from the spillway crest and the 
remaining positive As as small as possible. 

It is difficult to extend the model (22) to a model where not only the free surface is unknown but 
in which also a part of the free spillway shape is unknown. The conditions to determine the 
position of this free part on the spillway shape cannot easily be given, because a simple equation 
such as Bernoulli’s on the free surface is not available. We suggest that only the part on the shape 
where we do not want cavitation is taken as free and that the volume of the spillway is minimized 
with all As positive. Suppose there are two fixed nodal points with indices lmin and I,,, on the 
shape. The free nodal points on the shape are denoted with index 1 (Imin < 1 < I,,, and xlmin > x,~,,). 
Furthermore, we can assume that the free part of the shape decreases for increasing y. The vector 
X of Section 4 can now be extended to the vector Z = (X, xzmin + 1 ,  xImin + 2 ,  . . . , x,,,, - 2, xImax - ) 
and the model can be given as 

Im-x 

I =l,in+ 1 
min c H Y l -  1 -Yz)(2%in-xl-  1 -Xd, 

subject to 

@i(Z)-(xi+xi+l)=O, i = l  . . . pl ,  

i - p 3  -0.5 

m- P3 
, i = p 3 + l  . . . m, @i(Z) - Q 

where k is the index of a free element point on the shape, I is the index of the free nodal points on 
the shape and i is the index of the free nodal points on the surface. 

If we give starting values for the free nodals on the shape and the free surface nodals, we can 
calculate the solution with the model (31). In every iteration step of (31) we have to solve Q, and Q 
with (24) and (22h). 

7. FINAL REMARKS 

In Section 4 we defined a model to solve the free surface and the discharge problem for the flow 
over a weir. The results in Section 5 are satisfactory. The extended optimization model to find the 
shape of a spillway is not tested, but it can be used as a starting point for further study. 
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